An Integrated Framework for Linking Ecosystem Services Valuation with Freshwater Flow in the Florida Everglades

Christina E. Brown¹, Mahadev Bhat¹, Jennifer Rehage¹, Ross Boucek¹, Jason Osborne², Pallab Mozumder¹ and Victor C. Engel³

¹Florida International University, Earth and Environment Department, Miami, FL USA; ²National Park Service, South Florida Natural Resource Center, Homestead, FL USA; ³U.S. Geological Survey, Southeast Ecological Science Center, Gainesville, FL USA
Outline

- Background
- Conceptual Model
- Flow-Fisheries Relationship
- Willingness to Pay
- Penalty Function
Linking Flow and Ecosystem Services

Recreational fisheries context: Estimate economic value in response to changes in various fishery attributes, which could occur as a result of changes in freshwater management flows in Everglades National Park.
Florida Everglades

Source: Everglades Foundation
Conceptual Model

Flow Rate at Water Structures
 Snook, Snapper, Red Drum, Tarpon, & Bonefish
 Salinity
 Water Depth in the Marsh

Sea Trout Survival Rate
 Bass Survival Rate

Fishing Experience
 Catch Rate
 Largest Keeper
 Boat Travel Distance
 Overall Ecosystem Health

$/unit Fishing Experience
 Discrete Choice Model

Angler Population
 Change in $ Value of Recreation
 Penalty Function
Flow-Fisheries Relationship

Estimating a seasonal catch-flow function for each species:

\[C = \beta_0 + \beta_1 F + \beta_2 \ln R + \beta_3 \text{Month}_1 + \beta_4 \text{Month}_2 \]

- \(C = \) CPUE
- \(F = \) Flow at structures
- \(R = \) Rainfall
- Monthly dummy variables

Winter (Dec, Jan, Feb)
Spring (Mar, Apr, May)
Summer (Jun, Jul, Aug)
Fall (Sept, Oct, Nov)
Flow-Fisheries Relationship

The relationship between water delivery and fishery habitat quality is modeled based on existing data sets.

Fisheries
- Creel surveys
- Species survival
- Habitat productivity

Water delivery
- S12, S333, S334, and other structures
- Seasonal dummy variables (reflecting stage and temperature)
- Precipitation
Willingness to Pay

Discrete Choice Experiment
We asked anglers to value a **percent change** in various attributes from the **current level**.

Scenario I
- **“Status quo”**
- Low/no additional per-trip cost

Scenarios II & III
- Maintain or improve current levels
- Increased per-trip cost

<table>
<thead>
<tr>
<th>Effects of Future Scenarios on Recreational Fishing Experience</th>
<th>Do Nothing or Do the Bare Minimum Scenario I</th>
<th>Protect or Improve the Current Status Scenario II</th>
<th>Protect or Improve the Current Status Scenario III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch rate</td>
<td>20% lower than your current catch rate</td>
<td>20% higher than your current catch rate</td>
<td>10% higher than your current catch rate</td>
</tr>
<tr>
<td>Size of the largest keeper</td>
<td>10% smaller than the largest fish you catch now</td>
<td>10% bigger than the largest fish you catch now</td>
<td>20% bigger than the largest fish you catch now</td>
</tr>
<tr>
<td>Boat travel distance for fishing</td>
<td>10% increase in the distance you currently travel by boat</td>
<td>10% increase in the distance you currently travel by boat</td>
<td>10% increase in the distance you currently travel by boat</td>
</tr>
<tr>
<td>Overall ecological health of the Everglades ecosystem</td>
<td>40% worse natural health than the current level</td>
<td>40% better natural health than the current level</td>
<td>40% better natural health than the current level</td>
</tr>
<tr>
<td>Additional cost paid by you on each trip ($ in terms of either higher boat launching fee, boat registration fee or tour guide fee)</td>
<td>No additional cost per trip</td>
<td>$30 more per trip</td>
<td>$10 more per trip</td>
</tr>
</tbody>
</table>
Willingness to Pay

Discrete Choice Experiment
We asked anglers to value a percent change in various attributes from the current level.

Let’s say C^k for current catch

Any given flow-related catch can be expressed as % change from the current catch

$$\Delta C = 100 \left[\frac{C - C^k}{C^k} \right] = 100 \left[\frac{C(F) - C^k}{C^k} \right]$$
Willingness to Pay

Discrete Choice Experiment
We asked anglers to value a percent change in various attributes from the current level.

Mixed logit WTP estimates
- Catch: $1.28
- Largest keeper: $1.64
- Travel distance: $1.58
- Ecosystem health: $3.44

<table>
<thead>
<tr>
<th>Effects of Future Scenarios on Recreational Fishing Experience</th>
<th>Do Nothing or Do the Bare Minimum Scenario I</th>
<th>Protect or Improve the Current Status Scenario II</th>
<th>Protect or Improve the Current Status Scenario III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch rate</td>
<td>20% lower than your current catch rate</td>
<td>20% higher than your current catch rate</td>
<td>10% higher than your current catch rate</td>
</tr>
<tr>
<td>Size of the largest keeper</td>
<td>10% smaller than the largest fish you catch now</td>
<td>10% bigger than the largest fish you catch now</td>
<td>20% bigger than the largest fish you catch now</td>
</tr>
<tr>
<td>Boat travel distance for fishing</td>
<td>10% increase in the distance you currently travel by boat</td>
<td>10% increase in the distance you currently travel by boat</td>
<td>10% increase in the distance you currently travel by boat</td>
</tr>
<tr>
<td>Overall ecological health of the Everglades ecosystem</td>
<td>40% worse natural health than the current level</td>
<td>40% better natural health than the current level</td>
<td>40% better natural health than the current level</td>
</tr>
<tr>
<td>Additional cost paid by you on each trip ($ in terms of either higher boat launch fee, boat registration fee or tour guide fee)</td>
<td>No additional cost per trip</td>
<td>$30 more per trip</td>
<td>$10 more per trip</td>
</tr>
</tbody>
</table>
Penalty Function

Penalty = loss of $ value in catch for not meeting target flow, F^t

For example, the penalty for not meeting the target catch is expressed as

$$P_c(F) = 100AW_c \left[\frac{C(F^t) - C(F)}{C^k} \right]$$

The proportionate loss in catch in relation to the current catch as a reference, monetized at the WTP estimate of a percent change in catch (W_c)
Penalty Function

Penalty = loss of $ value in catch for not meeting target flow, F^t

For example, the penalty for not meeting the target catch is expressed as

$$P_c(F) = 100AW_c \left[\frac{C(F^t) - C(F)}{C^k} \right]$$

The proportionate loss in catch in relation to the current catch as a reference, monetized at the WTP estimate of a percent change in catch (W_c)
Penalty Function

Weighted catch penalty function

\[P_a = \sum_{i=1}^{N} \omega_i \left\{ T W_c \times 100 \left[\frac{C_i(F^t) - C_i(F)}{C_i^{k_0}} \right] \right\} \]
Penalty Function

Weighted catch penalty function

\[P_a = \sum_{i=1}^{N} \omega_i \left\{ T W_c \times 100 \left[\frac{c_i(F^t) - c_i(F)}{c_i} \right] \right\} \]
Penalty Function

Combined penalty function

Summer Months - Catch & Harvest

Penalty ($)

Flow (KAF)

May
June
July
Applications & Future Work

- Contribute to broad-sector hydro-economic optimization model for south Florida as part of the South Florida Water, Sustainability, and Climate Project
- Scenario analysis for both past and future water management decisions
- Framework to estimate loss of benefits in other ecosystem services (carbon storage) and/or regions (Caloosahatchee and St. Lucie River Estuaries)
Acknowledgments

Thanks to Dr. Mahadev Bhat, Dr. Jennifer Rehage, Dr. Pallab Mozumder, and Dr. Mike Sukop.

This material is based upon work supported by the National Science Foundation under Grant No. EAR-1204762 as part of the South Florida Water, Sustainability, and Climate Project.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Questions?