An operational and theoretically sound sustainability assessment framework for integrated coastal zone management: Satoumi, ecosystem services approach, and inclusive wealth

Takuro Uehara, Jia Niu, Xiaochen Chen, (Ritsumeikan Univ.)

Keito Mineo (Kyoto Univ.)

Takahiro Ota (Nagasaki Univ.)

2016/6/27 ISEE 2016

@University of District of Colombia
1. Introduction
2. Novel framework
 • Overview
 • Components: IW, Satoumi, and ESA
 • Assessment steps
3. Test in the Seto Inland Sea
4. Discussion
5. Conclusion
1.1 Introduction

- Integrated coastal zone management (ICZM) has been adopted worldwide, including Europe and Japan
- Proper assessment framework and indicators are important for implementation and monitoring process of ICZM
- Several shortcomings remain on existing ICZM indicators
 - lacking reflection of the socio-ecological interactions
 - poor coordination between research outcome and practice
 - weak connection between the indicators and ICZM objectives
- Our aim is to develop practical and theoretically sound assessment framework for ICZM

1) Hoffman (2009), Maccarrone et al, (2014)
1.2 *Satoumi* creation as a policy target

- In Japanese ICZM, creation of “Satoumi”, a coastal zone where productivity and biodiversity are enriched with human-nature interaction, is set as a policy target in recent Japan\(^2\)
 - Shift of social needs and political awareness from “*clean ocean*” to “*rich ocean*”\(^3\)
- This phenomena can be generalized using concepts of Environmental Kuznets Curve and Socio-Ecological Production Landscapes\(^4\) (SEPLs)

![Environmental Kuznets Curve figure](image_url)

2.1 Overview of the framework

- Inclusive Wealth: robust and realistic sustainability assessment framework; the computation basis of this framework
- Satoumi: Japanese concept of SEPLs; the guide for the “desired state” of coastal zones
- Ecosystem Services Approach: a scientific field for relationships between ecosystems and human well-being; the bridge between IW and satoumi to “translate” the desired state into scientific terms

Source: authors
2.2.1 Inclusive Wealth

1. Sustainable development path

\[\frac{dV_t}{dt} = \sum_i p_{it} \frac{dK_{it}}{dt} + \frac{\partial V_t}{\partial t} \geq 0 \quad (1) \]

- Where \(V_t \) is value function of social welfare,
- \(p_{it} \) is shadow price of \(i \)th stock at time \(t \),
- \(\frac{\partial V_t}{\partial t} \) is a drift term which reflects external influences

2. Desired state

\[\begin{cases} \frac{dV_t}{dt} > 0 & \text{if } V_t < V \\ \frac{dV_t}{dt} \leq 0 & \text{otherwise} \end{cases} \quad (2) \]

3. Strong sustainability

\[p_{jt}K_{jt} \geq v_j \quad j \in (1, ..., m), \quad (3) \]

where \(v_j \) is the threshold of a stock valued with its shadow price
2.2.2 Satoumi

- Satoumi is a Japanese concept of coastal SEPLs, where human-nature interaction enhance ecosystem services
 - *Sato*: rural residential area
 - *Umi*: ocean
- Satoumi is also considered as “ideal relationships which should be created between human beings and the sea”
- Recently, it is considered as one of the key concepts in Japanese ICZM to revitalize coastal zone

Source: Ministry of Environment, Japan

6) Japanese Basic Plan on Ocean Policy, 2013
2.2.3 Ecosystem Services Approach

- Ecosystem service science is a field to study relationship between ecosystem and biodiversity (structure, function) and human well-being (benefit and value)
- Exponential research outcomes and the effort to “mainstreaming”

1. Structure (and process)
 - Biophysical structures that create the basis for functioning of the ecosystem.
 - Spatial perspective.

2. Function
 - Functioning of ecosystem that is needed to produce ecosystem services.
 - Temporal perspective.

3. Benefit
 - The used share of the potential of ecosystem services.
 - Benefits can be also non-material.

4. Value
 - Economic, social, health (physical or spiritual) and intrinsic value of the benefit.

Source: Mononen et al. 2016
2.3 Assessment steps

I. Setting the “desired state”
 1. Set the “desired state” with the Satoumi concept

II. “Translation”
 2. Identify ecosystem services in the “desired state”
 3. Identify stocks in the “desired state”

III. IWI computation
 4. Collect shadow prices
 5. Collect stock data
 6. Compute inclusive wealth

• Source: authors
4.1 test in the Seto Inland Sea

- The framework was tested in the Seto Inland Sea, Japan, to demonstrate the computation and to explore research direction
 - an semi-enclosed coastal area which is economically, culturally, and ecologically important to Japan

4.2 Stocks selection and computation method

- General criteria
 - significance on satoumi, immobility, data availability

- Human capital: oyster farmers
 - importance of fishermen for satoumi maintenance, immobility

- Natural capital: mudflats, seagrass beds, and Japanese Spanish Mackerel
 - Mudflats and seagrass beds: importance for coastal ecosystem and as a policy target
 - Japanese Spanish Mackerel: cultural and religious importance, living near the Seto Inland Sea

- Manufactured capital: oyster raft areas
 - significance on satoumi, low possibility of outflow

- IW computation
 - UNU-IHDP and UNEP (2012), Pearson et al. (2013)
 - Statistic data of Ministry of Agriculture, Forestry and Fisheries, Japan and Ministry of the Environment, Japan etc.
4.3 test result

- The result shows the capitals’ total values declined except for Japanese Spanish Mackerel from 1960 to 2010.
- We cannot say if Seto Inland Sea is on sustainable path because we did not set “desired state” here (V₁ or V₂?)
5. Discussion: research directions

1. Setting “desired state”
 • Field surveys (interview to local community and specialists, workshop) are needed

2. Shadow prices dynamics
 • Shadow prices estimation is a critical issue for IW computation (Pearson et al. 2013) and is dynamic (e.g. Costanza et al., 2014). However, such studies remain scant (Bennet et al., 2015)

3. External factors (drift term)
 • Drift term vanishes assuming a time-autonomous resource allocation mechanism (Arrow et al., 2003), however, it does not vanish in a open small region (e.g. export prices, exogenously led inflows and outflows of capital assets, participation of volunteers, and population changes)
6. Conclusion

• A novel sustainability assessment framework for ICZM focusing on revitalization of coastal zone in developed countries is proposed

• This framework integrates three independently developed concepts; inclusive wealth (IW), satoumi, and ecosystem services approach (ESA)

• The framework was tested in Seto Inland Sea, Japan, choosing five stocks to demonstrate computation and to explore research direction

• The test result showed declining trend on four capitals, and further researches are needed for rigorous computation on setting “desired state”, shadow prices dynamics, and drift term
References

Acknowledgements

We deeply thank valuable comments and kind support from

- Dr. Koichi Kuriyama
 - Professor, Division of Natural Resource Economics, Graduate School of Agriculture, Kyoto University

- Dr. Mamoru Kanzaki
 - Professor, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University

- Dr. Koji Matsushita
 - Associate Professor, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University

This research was supported by the Environment Research and Technology Development Fund (S-13) of the Ministry of the Environment, Japan.

Contact: ueharatakur@gmail.com
mineo.keito.78n@kyoto-u.jp
S1. Human capital (oyster farmers)

- We simply adopted the number of oyster farmers, assuming they cannot be differentiated regarding their skills and corresponding compensation.

\[HCW_t = W_t \sum_{t=1}^{50} \frac{I_t}{(1+r)^t} \] (5)

- \(W_t \): number of oyster farmers in \(t \)
- \(I_t \): income earned from oyster farming in \(t \)
- \(r \): interest rate of 8.5% (UNU-IHDP, 2014)
- It was assumed that oyster farmers work 50 years on average

<table>
<thead>
<tr>
<th>Time</th>
<th>(HCW_t)</th>
<th>(W_t)</th>
<th>(\sum_{t=1}^{50} \frac{I_t}{(1+r)^t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years ago</td>
<td>55,597,461 TJPY</td>
<td>2,769 farmers</td>
<td>20,079 TJPY</td>
</tr>
<tr>
<td>Current</td>
<td>48,781,927 TJPY</td>
<td>2,574 farmers</td>
<td>18,951 TJPY</td>
</tr>
</tbody>
</table>
S2.1 Natural Capital (Japanese Spanish Mackerel)

- We assumed that the stock commercially available at t is maintained

$$WS_t = \sum_{t=1}^{\infty} \frac{Stock \text{ commercially available}_t \cdot Price_t \cdot Rental \text{ Rate}_t}{(1+r)^t}$$

- r: discount rate = 5.0% (UNU-IHDP, 2014)
- In actual estimation, the same rental rate was applied to both times because of a lack of data.

<table>
<thead>
<tr>
<th>Time</th>
<th>WS_t</th>
<th>Rental Rate</th>
<th>$\sum_{t=1}^{\infty} \frac{Stock \text{ commercially available}_t \cdot Price_t}{(1+r)^t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years ago</td>
<td>10,529,662 TJPY</td>
<td>0.379</td>
<td>1,389,138 TJPY</td>
</tr>
<tr>
<td>Current</td>
<td>12,239,960 TJPY</td>
<td>0.379</td>
<td>1,614,770 TJPY</td>
</tr>
</tbody>
</table>
S2.2 Natural Capital (Seagrass bed)

- The present value of the total wealth obtained from seagrass bed areas (Seagrass bed Area Wealth, SAW) follows as:

\[
SAW_t = A_t \times Wha_t = A_t \times \sum_{t=1}^{\infty} \frac{P_t}{(1 + r)^t}
\]

- \(A\): seagrass bed area in interaction with population and contributing to social welfare at time \(t\)
- \(Wha\): the value of total wealth per hectare
- \(P\): marginal contribution of ecosystem service flows to inter-temporal social welfare
- \(r\): discount rate of 5.0% (UNU-IHDP, 2014)

<table>
<thead>
<tr>
<th>Time</th>
<th>(A_t \times Wha_t)</th>
<th>(A_t)</th>
<th>(\sum_{t=1}^{\infty} \frac{P_t}{(1 + r)^t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years ago</td>
<td>3,700,397,219 TJPY</td>
<td>15,000 ha</td>
<td>246,693 TJPY</td>
</tr>
<tr>
<td>Current</td>
<td>2,946,256,266 TJPY</td>
<td>11,943 ha</td>
<td>246,693 TJPY</td>
</tr>
</tbody>
</table>
S2.3 Natural Capital (Mudflats)

- The present value of the total wealth obtained from mudflat areas (Mudflat Area Wealth, MAW) is estimated as:

\[MAW_t = A_t \times Wha_t = A_t \times \sum_{t=1}^{\infty} \frac{P_t}{(1 + r)^t} \]

- \(A_t \): mudflat area in interaction with population and contributing to social welfare at time \(t \)
- \(Wha_t \): the value of total wealth per hectare
- \(P_t \): marginal contribution of ecosystem service flows to inter-temporal social welfare
- \(r \): discount rate of 5.0% (UNU-IHDP, 2014)

<table>
<thead>
<tr>
<th>Time</th>
<th>(A_t \times Wha_t)</th>
<th>(A_t)</th>
<th>(\sum_{t=1}^{\infty} \frac{P_t}{(1 + r)^t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years ago</td>
<td>1,403,007,660 TJPY</td>
<td>22,635 ha</td>
<td>61,984 TJPY</td>
</tr>
<tr>
<td>Current</td>
<td>436,087,805 TJPY</td>
<td>6,381 ha</td>
<td>68,342 TJPY</td>
</tr>
</tbody>
</table>
S3. Manufactured capital (Oyster raft)

- To compute the shadow price of oyster raft areas, we applied a similar methodology as the one used to compute cropland value in the IW report 2014 (UNU-IHDP, 2014). Conceptually, it computes the net present value (NPV) of future rental flows obtained from oyster farming.

- The present value of the total wealth obtained from oyster raft areas (Raft Areas Wealth, RAW) is computed as the product of the oyster raft areas and the total wealth per hectare as:

$$RAW_t = A_t \times Wha_t = A_t \times \sum_{t=1}^{\infty} \frac{RP_t}{(1 + r)^t} = A_t \times \sum_{t=1}^{\infty} \frac{1}{(1 + r)^t} \frac{R_t \times P_t \times Q_t}{A_t}$$

- **Wha**: present value of the total wealth per hectare
- **RP**: rental price per hectare
- **r**: discount rate of 5.0% (UNU-IHDP, 2014)
- **R**: rental rate
- **P**: price per amount of oysters
- **Q**: quantity of production of oysters
- **A**: total area harvested

<table>
<thead>
<tr>
<th>Time</th>
<th>$A_t \times Wha_t$</th>
<th>R_t</th>
<th>$A_t \times \sum_{t=1}^{\infty} \frac{1}{(1 + r)^t} \frac{P_t \times Q_t}{A_t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 years ago</td>
<td>185,608,015 TJPY</td>
<td>0.582</td>
<td>15,951,672 TJPY</td>
</tr>
<tr>
<td>Current</td>
<td>138,343,170 TJPY</td>
<td>0.289</td>
<td>23,934,804 TJPY</td>
</tr>
</tbody>
</table>